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A B S T R A C T

Since the functional link artificial neural network (FLANN) filter using trigonometric expansions do not exploit
cross-terms (products of input samples and /or past output samples with different time shifts), its performance
for nonlinear active noise control (ANC) can be considerably degraded, especially in strong nonlinearity en-
vironment. In order to overcome this drawback, a novel bilinear FLANN (BFLANN) filter for the nonlinear ANC is
proposed in this paper. In addition, a sufficient condition that guarantees the stability of the BFLANN filter is also
presented. Simulation results demonstrate that the proposed BFLANN filter based nonlinear ANC can achieve
better performance than the FLANN and generalized FLANN (GFLANN) filters based nonlinear ANC in the
presence of strong nonlinearity.

1. Introduction

In order to solve acoustic noise problems (such as noises from en-
gines, fans and compressors…), the active noise control (ANC) systems
have become a potential solution and attracted attention of many re-
searchers [1,2]. It is well known that conventional ANC system using
the linear filter as a linear controller has been widely and popularly
applied [3,4]. However, since the linear ANC system does not take
account of nonlinearity that is contained in the components of the ac-
tual ANC systems, its performance may be seriously degraded [5–7].

To deal with this problem, various types of nonlinear filters based
on the polynomial filter (PF) and neural networks (NNs) such as radial
basic function (RBF) [6], multilayer neural network (MLNN) [8–10],
recurrent neural network (RNN) [11] and Volterra filters (VFs) [12,13]
have been used in the nonlinear ANC systems with good result. These
nonlinear filters, however, exhibit numerous disadvantages such as the
complicated architecture and the heavy computational burden of its
implementation.

In addition, an effective alternative to nonlinear filter in nonlinear
ANC systems is the well-known FLANN filter using trigonometric ex-
pansions[14–20], and its several modifications (such as recursive
FLANN [21,22], reduced feedback FLANN [23] and hybrid active noise
control system-based FLANN [24–27]) have also been presented in re-
cent years.

However, as pointed out in [28], the performance of nonlinear ANC
systems using the FLANN can be negatively affected because of the lack
of cross-terms. This becomes more serious as the strong nonlinearity is

present in the components of the actual ANC systems. In [28], Sicur-
anza and Carini have proposed a GFLANN filter with the use of trigo-
nometric expansions including suitable cross-terms for nonlinear ANC
system. Research results indicate that GFLANN controller has better
performance than FLANN and high-order Volterra controllers in the
presence of strong nonlinearity in the primary or secondary paths. With
the aim of further exploiting the advantage of the cross product terms, a
bilinear FLANN (BFLANN) filter for nonlinear ANC system is presented
in this paper. Unlike the GFLANN, thanks for employing both feedback
and feedforward polynomials, the proposed filter can accurately model
nonlinear systems with shorter filter length.

The rest of this paper is organized as follows: Section 2 proposes
new BFLANN filter for nonlinear ANC system; Section 3 and 4 present
the analysis of stability condition and computational complexity, re-
spectively; Section 5 provides computer simulation studies of the pro-
posed controller; finally, the conclusion is drawn in Section 6.

2. BFLANN filter for nonlinear ANC system

The block diagram of the NANC system using BFLANN filter is il-
lustrated in Fig. 1. Here, the transfer functions P(z), S(z) represent the
primary path from the reference microphone to the error microphone
and the secondary path from the output of the filter to the output of the
error microphone, respectively.

The P(z), S(z) and input signal x(n) may contain nonlinearities.
In order to avoid the confusion and complication, in this section we

just introduce the BFLANN of order P=1. The approach can be easily
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extended to a BFLANN filter of any order P.
Therefore, similar to [29], the relationship between input x(n) and

output y(n) of the BFLANN filter with a memory length of L expressed as
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where aj(n), b1j(n) and b2j(n) are feedforward coefficients extended by
FLANN with the order P=1; cj(n) are feedback coefficients; d1i,j(n),
d2i,j(n) and d3i,j(n) are the coefficients of cross-terms.

Similar to [30–33], in order to achieve an efficient implementation
based on a filter bank formed with FIR filters, (1) can be equivalently
written as follows
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where i denotes the bilinear filter channel number and j designates the
time index; g1i,j(n), h1i,j(n), g2i,j(n), h2i,j(n) and g3i,j(n), h3i,j(n) are the
coefficients of the cross-terms.

To derive the adaptive algorithm for BFLANN filter, the model in (2)
is rewritten under the vector form as follows
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where signal vectors and their corresponding coefficient vectors are
listed below
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Fig. 1. The nonlinear ANC system based on the BFLANN filter.

D.C. Le et al. Applied Acoustics 132 (2018) 19–25

20



= ⋯ − −G n g n g n g n2 ( ) [ 2 ( ) 2 ( ) 2 ( )]i
T

i i i L i
T

,0 ,1 , 1 (14)

= − − − − …

− + + − +

V n πx n y n i πx n y n i

πx n L i y n L

2 ( ) [sin( ( )) ( )sin( ( 1)) ( 1)

sin( ( 1 )) ( 1)]
i
T

T (15)

= ⋯ − −G n g n g n g n3 ( ) [ 3 ( ) 3 ( ) 3 ( )]i
T

i i i L i
T

,0 ,1 , 1 (16)

= − − − − …

− + + − +

V n cos πx n y n i cos πx n y n i

πx n L i y n L

3 ( ) [ ( ( )) ( ) ( ( 1)) ( 1)

cos( ( 1 )) ( 1)]
i
T

T (17)

= ⋯ − −H n h n h n h n1 ( ) [ 1 ( ) 1 ( ) 1 ( )]i
T

i i i L i
T

,0 ,1 , 1 (18)

= − − − − − … − + − +Q n x n i y n x n i y n x n L y n L i1 ( ) [ ( ) ( 1) ( 1) ( 2) ( 1) ( )]i
T T

(19)

= ⋯ − −H n h n h n h n2 ( ) [ 2 ( ) 2 ( ) 2 ( )]i
T

i i i L i
T

,0 ,1 , 1 (20)

= − − − − − …

− + − +

Q n πx n i y n πx n i y n

πx n L y n L i

2 ( ) [sin( ( )) ( 1)sin( ( 1)) ( 2)

sin( ( 1)) ( )]
i
T

T (21)

= ⋯ − −H n h n h n h n3 ( ) [ 3 ( ) 3 ( ) 3 ( )]i
T

i i i L i
T

,0 ,1 , 1 (22)

= − − − − − …

− + − +

Q n cos πx n i y n cos πx n i y n

πx n L y n L i

3 ( ) [ ( ( )) ( 1) ( ( 1)) ( 2)

cos( ( 1)) ( )]
i
T

T (23)

By combination of (4), (6), (8), (10), (12), (14), (16), (18), (20) and
(22), we get the coefficient vector as an overall vector W(n) as follows
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Similarly, we can combine (5), (7), (9), (11), (13), (15), (17), (19),
(21) and (23), to generalize signal vector U(n) as follow

= … …

… … …

…

−

− − −

− −

U n U n U n U n U n V n V n V n

V n V n V n Q n Q n Q n

Q n Q n Q n

( ) [ ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 2 ( )

2 ( ) 3 ( ) 3 ( ) 1 ( ) 1 ( ) 2 ( )

2 ( ) 3 ( ) 3 ( )]

T T T T T
L
T T

L
T T

L
T T

L
T T

L
T T

L
T T

1 21 22 3 1 1 1

1 1 1 1 1 1

1 1 1 (25)

With the definitions in (24) and (25), the BFLANN filter output can
be simplified to

=y n W n U n( ) ( ) ( )T (26)

Fig. 2 illustrates the diagonal-channels of V2i(n), Q2i(n) vectors for
the case L=4

The residual noise sensed by the error microphone, which can is
given by (see Fig. 1)
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where d(n) is primary noise signal at the cancellation point and ̂d n( ) is
the signal generated by the adaptive control and propagated through
the secondary path to the cancellation point.Similar to [34], we use a
virtual secondary path concept ∼S n( ) to achieve a unified filtered-x

structure for both NANC/linear secondary path (LSP) and NANC/non-
linear secondary path (NSP). It is defined as a time-varying filter with
coefficients as follows
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where M is the length of the virtual secondary path.
Using the same approach in [29] and assumptions in [35], the

coefficient update equations of the BFLANN filter are derived and
summarized as

+ = +
′

′A n A n
μ

U n
U n e n( 1) ( )

‖ ( )‖
( ) ( )a

2 1 (29a)

+ = +
′

′B n B n
μ

U n
U n e n( 1) ( )

‖ ( )‖
( ) ( )b

2 2 (29b)

+ = +
′

′C n C n
μ

U n
U n e n( 1) ( )

‖ ( )‖
( ) ( )c

2 3 (29c)

+ = +
′

′D n D n
μ

U n
U n e n( 1) ( )

‖ ( )‖
( ) ( )d

2 4 (29d)

where

′ = ∗∼U n S n U n( ) ( ) ( )1 1 (30)

=B n B n B n( ) [ ( ) ( ) ]T T T
1 2 (31)

′ = ∗ ∗∼ ∼U n S n U n S n U n( ) [[ ( ) ( )] [ ( ) ( )] ]T T T
2 21 22 (32)

′ = ∗∼U n S n U n( ) ( ) ( )3 3 (33)

= … … …

… … …
− −

− − −

−

D n G n G n G n G n G n

G n H n H n H n H n H n

H n

( ) [ 1 ( ) 1 ( ) 2 ( ) 2 ( ) 3 ( )

3 ( ) 1 ( ) 1 ( ) 2 ( ) 2 ( ) 3 ( )

3 ( )]

T
L
T T

L
T T

L
T T

L
T T

L
T T

L
T T

1 1 1 1 1

1 1 1 1 1 1

1 (34)

′ = ∗ … ∗ ∗ …

∗ ∗ …

∗ ∗ …

∗ ∗ …

∗ ∗ … ∗

∼ ∼ ∼

∼ ∼

∼ ∼

∼ ∼

∼ ∼ ∼

−

−

−

−

− −

U n S n V n S n V n S n V n

S n V n S n V n

S n V n S n Q n

S n Q n S n Q n

S n Q n S n Q n S n Q n

( ) {[ ( ) 1 ( )] [ ( ) 1 ( )] [ ( ) 2 ( )]

[ ( ) 2 ( )] [ ( ) 3 ( )]

[ ( ) 3 ( )] [ ( ) 1 ( )]

[ ( ) 1 ( )] [ ( ) 2 ( )]

[ ( ) 2 ( )] [ ( ) 3 ( )] [ ( ) 3 ( )] }

T
L

T T

L
T T

L
T T

L
T T

L
T T

L
T T

4 1 1 1

1 1

1 1

1 1

1 1 1 (35)

′ = ′ ′ ′ ′[ ( ) ( ) ( ) ( )]U n U n U n U n U n( ) T
1 2 3 4

T T T T

(36)

where ∗ denotes convolution and ′U n( )1 , ′U n( )2 , ′U n( )3 , ′U n( )4
are the filtered version of U n U n U n U( )[ ( ) ( )]T T T

1 21 22 3

… … … …

… …
− −

− − −

n V n V n V n V n V n Q n

Q n Q n Q n Q n Q n

( ),[ 1 ( ) 1 ( ) 2 ( ) 2 ( ) 3 ( ) 1 ( )

1 ( ) 2 ( ) 2 ( ) 3 ( ) 3 ( )]

T
L
T T

L
T T T

L
T T

L
T T

L
T T

1 1 1 1 1 1

1 1 1 1 1

by the virtual

secondary path ∼S n( ), respectively. ′ = ′ ′U n U n U n‖ ( ) ‖ ( ) ( )2
T

is the
squared Euclidean norm which is used as a normalization factor. μa, μb,
μc and μd are the learning rate for the feed-forward coefficients A(n), B
(n), the feedback coefficients C(n), and the cross-term coefficients D(n),
respectively.

3. The stability condition

The same as in the IIR filter, most bilinear systems are inherently
unstable. Consequently, in this section we propose a sufficient condition
to guarantee the output of BFLANN system which is bounded whenever
its input signal is bounded by finite constant.

Using time-invariant operator, the model in (1) can be rewritten as
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Fig. 2. Illustrate the cross-terms of V2i(n), Q2i(n) vectors for the case L=4.
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By utilizing the approach in [36], a sufficient condition for the
stability of the BFLANN filter is given by the following theorem.
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Proof. first of all, we assume that model expressed in (37) is initially at
rest, it then is defined as follows

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = + +
− = +

+
= … +

= =…= = < −

−

− −

+

C z y n A z x n B z πx n B z πx n
C z y n D z x n y n D z πx n

y n D z πx n y n
for k n
y T y T y T for T

(1 ( )) ( ) ( ) ( ) 1( )sin( ( ) 2( )cos( ( )
(1 ( )) ( ) 1( )[ ( ), ( )] 2( )[sin( ( )),

( )] 3( )[cos( ( )), ( )]
2,3, , 1

( ) ( ) ( ) 0 1

k k

k k

n

1

1

1 1

1 2 1

(41)

Similar to [36], we can deduce as
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and
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for k= 2,3,…,n+ 1.For x(n) is bounded by Mx > 0 for every n, the
sine and cosine functions are bounded by unity. On the other hand,
since <p| | 1i , the following equality hold
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By substituting (44) in (42) and using the above conditions, we have
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From (45) it results
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Now, we easily derive that y2(n) is bounded by

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

⩽
⎛

⎝
⎜ + +

⎞

⎠
⎟

×
⎛

⎝
⎜

⎛

⎝
⎜ + +

⎞

⎠
⎟

⎞

⎠
⎟

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

y n M d d d

M a b b

| ( )| Φ | 1 | | 2 | | 3 |

Φ | | | 1 | | 2 |

x
i

L

j

L

i j
i

L

j

L

i j
i

L

j

L

i j

x
j

L

j
j

L

j
j

L

j

2
0

1

1

1

,
0

1

1

1

,
0

1

1

1

,

0

1

0

1

0

1

(47)

Exploiting the induction method, we can go to
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According to the approach in [36], we easily show that
= ∑ =
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Moreover, since
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It is easy to see that
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This completes the proof.

4. Computational complexity analysis

To compare the computational complexity of proposed BFLANN
controller with FLANN and GFLANN controllers, we carried out the
analysis of their computational complexity in terms of the number of
multiplications and additions for both the linear secondary path (LSP)
and the nonlinear secondary path (NSP). Assume that L is the memory
length of the BFLANN; N is the memory length and Nd denotes the
number of diagonals involving cross-terms with delay difference of the
GFLANN; K and P are the memory length and the order of expansion
function of the FLANN; M is the memory size of the virtual secondary
path.

4.1. Computational complexity for NANC/LSP

The NANC system using the adaptive BFLANN filter requires major
operations as follows.

The operations for generating the cross-terms require 6(L− 1)
multiplications.

The operations for generating the adaptive bilinear FLANN filter
output, which require 3L+(L− 1)+ 3L(L− 1) multiplications and
3L+(L− 1)+ 3L(L− 1)− 1 additions.

The operations for generating the filtered signals through pass of the
virtual secondary path, which requires (6(L− 1)+ 4))M multi-
plications and (6(L− 1)+ 4))(M− 1) additions.

The operations for updating filter coefficients defined in (29a–29d),
which requires 2(3L+(L− 1)+ 3L(L− 1))+ 4 multiplications and
2(3L+(L− 1)+ 3L(L− 1))− 1 additions.

Total computational load of BFLANN is 9L2+ 9L+6LM− 2M− 5
multiplications and 9L2− 3L+6LM− 2M− 3 additions.

The same analysis we obtain total computational load of GFLANN
and FLANN filters are (3+ 2Nd)M+3N2+ 6N+2Nd+3 multi-
plications, 3N2+ 6N+2NdM+3M− 2Nd− 5 additions and
3(K+2PK)+ 2+ (2P+1)M multiplications, 3(K+2PK)− 2+
(2P+1)(M− 1) additions, respectively. (In these analyses, all adap-
tive filters are updated by Filtered-X NLMS-based algorithms).

4.2. Computational complexity for NANC/NSP

When the secondary path is nonlinear, the virtual secondary filter is
time-varying. Consequently, we cannot take advantage of the delay
relationship existing in the nonlinear states. Thus, each element of U(n)
must be filtered by the virtual secondary path ∼S n( ).

By calculating similar to the case of NANC/LSP, we obtain the total
computational load of the filters as follows:

• For the FLANN requires (3+M)(K+2PK)+ 2 multiplication and
(2+M)(K+2PK)− 2 addition.

• For the GLANN requires (3+M)(N2+ 2N)+ 2Nd+3 multi-
plication and (M+2)(N2+ 2N)− 2 addition.

• For the BLANN requires (3L2+ L− 1)(M+3)+6(L− 1)+ 4
multiplication and (3L2+ L− 1)(M+2)− 2 addition.

5. Simulation

In order to prove the effectiveness of our proposed filter for the
NANC system, several simulation results are provided in this section.

The performance of the BFLANN filter is compared with the FLANN and
GFLANN filters for both NANC/LSP and NANC/NSP.

In the experiments, the performance of the different filters will be
measured in terms of the normalized mean-square error (NMSE) which
is obtained by averaging over 200 independent runs.

⎜ ⎟= ⎛
⎝

⎞
⎠

NMSE E e n
δ

10log10 ( ( ))
d

2

2 (50)

where δd
2 is the variance of the primary noise at the cancellation point,

e2(n) is the square of the error at nth iteration and E(.) is the expecta-
tion operator.

The memory length of the FLANN and GFLANN filters are chosen as
N=K=10; and of the BFLANN denoted as L=6. The function ex-
pansion of the input signal is third-order type (P=3) for the FLANN
and first-order type (P=1) for GFLANN and BFLANN. The parameter
for expanding nonlinear function of GFLANN is chosen as Nd=9.

The ensemble curves are smoothed with a rectangular window of
length equal to 20 samples in order to better discern the curves beha-
vior.

5.1. Experiment I

In this experiment, we simulate NANC system with the nonlinear
secondary path and the primary path exhibits high nonlinear behavior.
Here, the primary path P(z) is modeled by a Volterra series whose input
x(n) and output d(n) relationship is described as

= + − + − + − − −

+ − + × − − − −

− − × − + − −

d n x n x n x n x n x n x n

x n x n x n x n x n x n

x n x n x n x n

( ) ( ) 0.8 ( 1) 0.3 ( 2) 0.4 ( 3) 0.8 ( ) ( 1)

0.9 ( ) ( 2) 0.7 ( ) ( 3) 3.9 ( 1) ( 2)

2.6 ( 1) ( 3) 2.1 ( 2) ( 3)

2

2 2 (51)

and the secondary path has the input y(n) to output ̂d n( ) relationship

̂ = + − + − − −

+ −

d n y n y n y n y n y n

y n y n

( ) ( ) 0.35 ( 1) 0.09 ( 2) 0.5 ( ) ( 1)

0.4 ( ) ( 2) (52)

The reference signal is white Gaussian noise. The learning rate of
FLANN is set to =η 0.01H , =η 0.9w for the nonlinear and linear parts,
respectively. Learning rate of GFLANN are =η 0.3W , =η 0.05H and

=η 0.5c for the linear, the sin(.) cos(.) functions and the cross-terms
parts, respectively. The learning rate of BFLANN μa=0.7, μb=0.02 for
the feedforward coefficients A(n), B(n), respectively, μc=0.01 and
μd=0.6 for the feedback coefficient C(n) and the cross-term coeffi-
cients D(n), respectively.

Fig. 3 illustrates the averaged NMSE performance curves of the fil-
ters for the reference signal is white Gaussian noise. It clearly indicates
that the BFLANN exhibits better performance as compared to FLANN
and GFLANN.

5.2. Experiment II

In practical NANC system, the secondary path can be seen as the
nonlinear effect of the power amplifier and loudspeaker at the output of
the filter, and thus it can be modeled by a Hammerstein filter with a
memoryless nonlinearity and the linear filter as

̂
=

= + − + −

v n y n

d n v n v n v n

( ) tanh( ( ))

( ) ( ) 0.2 ( 1) 0.05 ( 2) (53)

Here, the input signal is white Gaussian noise. The learning rate of
FLANN is set to =η 0.01H ; =η 0.8w for the nonlinear and linear parts,
respectively. The learning rate of GFLANN are set to =η 0.2W ,

=η 0.05H and =η 0.6c for the linear, the sin(.) cos(.) functions and the
cross-terms parts, respectively. The learning rate of BFLANN is selected
as: μa=0.6, μb=0.01, μc=0.01 and μd=0.7.

Table 1 illustrates the computational complexity of the controllers
for NANC/NSP.
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Fig. 4 shows a comparative plot of the NMSE achieved by NANC
with the BFLANN, GFLANN and FLANN filters versus the number of
iterations. It is observed that the performance of the BFLANN and
GFLAN in NANC systems is superior to the FLANN for nonlinear sec-
ondary path, while the BFLANN is slightly better than the GFLANN. In
addition, Table 1 also shows that in the case of NANC/NSP, the com-
putational complexity of BFLANN is lower than that of GFLANN.

5.3. Experiment III

In this experiment, a logistic chaotic noise is chosen as the reference
noise source as in [5], which is generated using the recursive equation
as follows

+ = −x n λx n x n( 1) ( )[1 ( )] (54)

where λ=4 and x(0)= 0.9 are selected. This noise process is nor-
malized to have unit signal power.

The linear primary path is modeled as an FIR filter with transfer
function

= − +− − −P z z z z( ) 0.3 0.28 9 10 (55)

and the secondary path transfer function is taken as the non-minimum-
phase model

= + −− − −S z z z z( ) 1.52 3 4 (56)

The learning rate of FLANN is set to = =η η 0.05H W for the non-
linear and linear parts. Learning rate of GFLANN are =η 0.6W ,

=η 0.05H and =η 0.01c for the linear, the sin(.) cos(.) functions and the
cross-terms parts, respectively. The learning rate of BFLANN is selected
as: μa=0.5, μb=0.2, μc=0.9 and μd=0.01.

Table 2 illustrates the computational complexity of the controllers
for NANC/LSP.

Fig. 5 illustrates the averaged NMSE performance curves of the fil-
ters using nonminimum-phase secondary path and chaotic reference
signal. From Fig. 5 it is observed that the proposed BFLANN filter yields
better NMSE performance compared to the FLANN and GFLANN filters.
However, as shown in Table 2, the computational complexity of
BFLANN is slightly higher than that of GFLANN.

5.4. Experiment IV

In this experiment, the primary noise at the cancellation point is
generated based on the third-order polynomial model as given in [13]

= − + − − −d n t n t n t n( ) ( 2) 0.08 ( 2) 0.04 ( 2)2 3 (57)

where t(n) is obtained by

= ∗t n x n f n( ) ( ) ( ) (58)
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Fig. 3. Learning curves of different filters for NANC/NSP, the secondary path is the
Volterra model.

Table 1
Computational requirements of the controllers for NANC/NSP.

Nonlinear controller Multiplications Additions

FLANN (K=10,P=3,M=3) 422 348

GFLANN (N=10,Nd=9,M=3) 741 598
BFLANN (L=6,M=3) 712 563
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Fig. 4. Learning curves of different filters for NANC/NSP, the secondary path is the
Hammerstein model.

Table 2
Computational requirements of the controllers for NANC/LSP.

Nonlinear controller Multiplications Additions

FLANN (K=10,P=3,M=5) 247 236

GFLANN (N=10,Nd=9,M=5) 483 442
BFLANN (L=6,M=5) 543 473
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Fig. 5. Learning curves of different filters for NANC/LSP, the reference signal is a logistic
chaotic noise, the secondary path is chosen as the non-minimum-phase model, the pri-
mary path is linear.
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and ∗ denotes the convolution operation, f(n) is the impulsive response
of the transfer function as

= − +− − −f z z z z( ) 0.3 0.23 4 5 (59)

The reference noise x(n) is a sinusoidal wave of 500 Hz sampled at
the rate of 8000 samples/s, which is obtained by

= ⎛
⎝

⎞
⎠

+x n π n ν n( ) 2 sin 2 500
8000

( )
(60)

where ν(n) denotes a Gaussian noise of 40 dB SNR
The secondary path is chosen as the one used in experiment IIIThe

learning rate of FLANN is set to =η 0.4H , =η 0.9w for the nonlinear and
linear parts, respectively. Learning rate of GFLANN are =η 0.6W ,

=η 0.35H and =η 0.1c for the linear, the sin(.) cos(.) functions and the
cross-terms parts, respectively. The learning rate of BFLANN are se-
lected as: =μ 0.7a , =μ 0.1b , =μ 0.9c and =μ 0.05d .

Fig. 6 depicts the performance comparison of NMSE for BFLANN,
GFLANN and FLANN filters. It is clear that the proposed BFLANN filter
achieves lower NMSE than that of GFLANN and FLANN filters.

In summary, simulation results and computational complexity
analysis indicate that the FLANN requires the lowest computations, but
its performance is also the lowest in comparison with GFLANN and
BFLANN. The BFLANN requires more computations than GFLANN for
the NANC/LSP case, but lower for the NANC/NSP case. However, the
performance of the BFLANN is better than that of the GFLANN for both
NANC/LSP and NANC/NSP.

6. Conclusion

In this paper, a novel adaptive BFLANN filter for the nonlinear ANC
systems is proposed. Similar to the GFLANN, this filter also satisfies the
properties of class of nonlinear filters whose output depends linearly on
the filter coefficient and nonlinear expansions satisfy a time-shift
property. Furthermore, to guarantee the stability of the proposed filter,
a sufficient condition for the BFLANN is also provided. The simulation
results have shown that the performance of the nonlinear ANC system
based on the BFLANN filter is better than that of the GFLANN and
FLANN filters.
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Fig. 6. Learning curves of different filters for NANC/LSP, the reference signal is a sinu-
soidal wav, the secondary path is chosen as the non-minimum-phase model, the primary
path is nonlinear.
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